
/7ys78 

A Concatenated Coded Modulation Scheme 
For Error Control 

q *-e (i;’ 

(ADDITION 11) 
(NASA-CR-183260) A CONCATEIA¶ED CODED Nag- I 4706 

B C D U L A T I C N  S C E E E E  PGB E B B C B  C C E T l C L  
( A E D I l I C N  2)  (Hauai f  U n i v . )  4; F CSCL 09B 

Unclas 
63/6 1 017US78 

Technical Report 
to 

NASA 
Goddard Space Flight Center 
Greenbelt) Maryland 20771 

Grant Number NAG 5-931 

Shu Lin 
Principal Investigator 

Department of Electrical Engineering 
University of Hawaii at Manoa 

Honolulu, Hawaii 96822 

September 25, 1988 



A Concatenated Coded Modulation Scheme 
For Error Control 

Tadao Kasami Shu Lin 

Osaka University University of Hawaii 
Toyonaka, Osaka 560, Japan Honolulu, Hawaii 96822 

ABSTRACT 

This paper presents a concatenated coded modulation scheme for error 
control in data communications. The scheme is achieved by concatenating 

a Reed-Solomon outer code and a bandwidth efficient block inner code for 
M-ary PSK modulation. Error performance of the scheme is analyzed for an 
AWGN channel. We show that extremely high reliability-can be attained by 
using a simple M-ary PSK modulation inner code and a relatively powerful 
Reed-Solomon outer code. Furthermore, if an inner code of high effective rate 
is used, the bandwidth expansion required by the scheme due to  coding will 
be greatly reduced. The proposed scheme is particularly effective for high- 
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I speed satellite communications for large file transfer where high reliability is 
required. 

This paper also presents a simple method for constructing block codes for 
M-ary PSK modulation. Some short M-ary PSK codes with good minimum 
squared Euclidean distance are constructed. These codes have trellis structure 
and hence can be decoded with a soft-decision Viterbi decoding algorithm. 
Furthermore, some of these codes are phase invariant under multiples of 45" I 

1 rotation. 
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A CONCATENATED CODED MODULATION SCHEME 
FOR ERROR CONTROL 

1. Introduction 

Recently a great deal of research effort has been expended in bandwidth efficient coded 
modulation for achieving reliable communication on bandlimited channels [l-37). This 

new technique of coded modulation is achieved by coding onto an expanded set of channel 
signals (relative to that needed for uncoded transmission). A properly designed coded 
modulation can provide significant coding gain over an uncoded modulation system with 
no or little bandwidth expansion. To achieve a 3 to 5 dB coding gain with a single modu- 
lation code, the decoding complexity is quite reasonable. However, to achieve coding gains 
exceeding 5 dB with a single modulation (trellis or block) code, the decoding complexity 
increases drastically, and the implementation of the decoder becomes very expensive and 
unpractical (if not impossible). Then the question is, “how can we achieve coded modu- 
lation with reduced complexity?”. An answer to this question is to use coded modulation 
in conjunction with concatenated coding. In this combined coding/modulation scheme, 
a good short modulation code is used as the inner code and a relatively powerful Reed- 
Solomon (RS) code is used as the outer code. With properly chosen inner and outer codes, 
this scheme not only can achieve large coding gain (or high reliability) with good band- 

width efficiency but also can be practically implemented. That is to say, this concatenated 
coding/modulation scheme offers a way of achieving the best of three worlds. 

In this paper, we present a coded modulation scheme with reduced complexity for error 
control in data communications. This scheme is achieved by concatenating a RS outer code 
and a bandwidth efficient block inner code for the M-ary PSK modulation. The outer code 
is interleaved to enhance the overall system performance. We show that this concatenated 
coded modulation scheme can achieve extremely high reliability (or large coding gain) with 
a very simple M-ary PSK modulation inner code. Furthermore, if an inner code of high 

effective rate is used, the overall bandwidth expansion of the scheme due to coding will be 
greatly reduced. Suppose an inner code with effective rate equal to one is used. Then the 
overall bandwidth expansion of the scheme is due to outer code coding. Generally, in a 

concatenated coding scheme, the RS outer code is a high rate code. Hence the bandwidth 

expansion required is small. Of course, if an inner code with effective rate greater than 
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one is used, the overall scheme may not need any bandwidth expansion at all [16,25]. The 
proposed scheme is particularly effective for high-speed satellite communications for large 
data file transfer where high reliability is required. 

The presentation of this paper is organized as follows. In Section 2, we present a sim- 
ple method for constructing block codes for M-ary PSK modulation with M = 2' which 
are suitable for concatenated coding. Some short M-ary PSK modulation codes with good 
minimum squared Euclidean distance are constructed. These codes have simple trellis 

structure and can be decoded with a soft-decision Viterbi decoding algorithm. Further- 
more, some of these codes are phase invariant under multiples of 45" rotation. In Section 
3, the encoding and decoding of the proposed concatenated coded modulation scheme is 

described. Error performance of the proposed scheme over an additive white Gaussian 
noise (AWGN) channel is analyzed in Section 4. In Section 5, two specific concatenated 
coded modulation schemes with the NASA standard (255,223) RS code over the Galois 
field GF(2*) as the outer code and 8-PSK modulation block codes as the inner codes are 
presented; their error performance and coding gains over the uncoded QPSK are evaluated. 

Conclusion is given in Section 6. 

2. Bandwidth Efficient Block Codes for M-ary PSK Modulation 

In this section, we present a simple method for constructing block codes for M-ary PSK 
modulation with M = 2' which are suitable for concatenated coding. Using this method, 
some good short codes are constructed. These codes have simple trellis structure and can 
be decoded with a soft-decision Viterbi decoding algorithm. 

2.1 Code Construction 

Consider the integer group, A = (0, 1,2,. . . ,2' - l}, under the modulo-2' addition. Let 
each element in A represent a point in a 2-dimensional 2'-PSK modulation signal set. 

Define a distance measure between two elements s and 51 in A, denoted d(s ,  a'), as follows: 

It is clear that d ( s , i )  = d(s  - s),O). Note that d ( s , s ' )  is simply the squared Euclidean 

distance between two 2'-PSK signal points represented by s and s) respectively. For 1 5 
i 5 I, let Bi = {0,2i-1}. Then A = {b, + b2 + -.- + bl : bi E Bi with 1 5 i 5 I}. Let di 
be the minimum distance between elements in the set, Bi + Bi+ + - + Bl, for I 5 i 5 1. 
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It is easy to see that c& = 4sin2(2'-'-'n). Let A" denote the set of all n-tuples over 
A. Define a squared Euclidean distance between two n-tuples, s = (sl, s2,. . . ,an) and 
st = (sl ,so,. . . , s i ) ,  over A as follows: 

1 1  

n 

d(")  ( s ,  8 ' )  d ( 8 j ,  S i 1 )  

j =  1 

where d ( s j , s l . )  = 4sino(2-'7r(s - 8 ' ) ) .  

For 1 5 i 5 I ,  let Ci be a block code of length n over Bi with minimum Hamming 
distance Si. From C,, C,, . . . , Cf , we construct a block code C with symbols from A as 
follows: 

C = {v, + v, + + vI : vi E Ci with 1 5 i 5 I } .  
I 

Then IC1 = fl lCil where 1x1 denotes the number of elements in set X. Let 
i= 1 

D(C] min{d(")(v,v') : v,vl E C and v # VI}. (2) 

Then D[C] is the minimum squared Euclidean distance of C. It is possible to show [see 

Appendix A] that 

- D[C] 2 min Sidi = min 4~5~sin'(2'-'-~?~). 
1Si<f  l < i < I  (3) 

The code Ci with symbols from Bi = {0,2'- '} can be constructed from a binary code c b ;  

of the same length and minimum Hamming distance Si by substituting 2'- for 1 in each 
nonzero component of a code vector in chi. Denote ci with 2'- ' chi. Then the following 
directsum, 

c = c b 1  +2cb, +**'+2'- 'cbI (4) 

is a linear code over the additive group A. The code C b i  is called a binary component code 

of c. Suppose C b i  is a binary (n,kbi) h e a r  code. Then 

1 

The parameter k = kbi is called the dimension of C. If each component of a code 

vector v in C is mapped into a point in a 2-dimensional 2'-PSK signal set, we obtain a 
block coded 2I-PSK modulation code. The effective rate of this code C is given by 

i= 1 

i= 1 
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which is the number of information bits transmitted by C per dimension. The asymptotic 
coding gain, denoted q[C], of C over the uncoded QPSK is given by (21, 

As an example, let 1 = 3, M = zs and n = 8. Then A = {0,1,2,3,4,5,6,7}, 
Bl = {0,1},B2 = {0,2} and B3 = {0,4}. The minimum squared Euclidean distances of 
A = B, + B2 + Bs , B2 + Bs , and BS are d ,  = 0.586,4 = 2 and ds = 4 respectively. Choose 
the binary component codes Cb1, c b 2  and CbS as follows: (1) c b l  is the binary (8,1) code 
which consists of the all-zero and all-one vectors; ( 2 )  c b 2  is the binary (8,7) code with all 
the even weight vectors; and (3) cbs is the (8,8) code which consists of all binary 8-tuples. 

Clearly the minimum Hamming distances of c b , ,  c b 2  and c b s  are 8, 2, and 1 respectively. 
Consequently, the code C = C,, + 2Cb2 + 4 c b 3  has minimum squared Euclidean distance 
D[C] = 4, dimension k = 16 and effective rate R = 1. Mapping the code symbols of C into 

points of the 8-PSK signal set as shown in Figure 1, we obtain a block code of length 8 for 
the 8-PSK modulation. This simple code provides a 3 dB coding gain over the uncoded 

QPSK modulation with no bandwidth expansion. Furthermore, the code has a trellis of 4 
states and 8 sections as shown in Figure 2 (see Appendix B for the trellis construction), 
and hence can be decoded easily - by a soft-decision Viterbi decoding algorithm. This code 
is in fact an analogue of one construction of Gosset lattice E8[6,17], and an analogous 
4-state and 4-section trellis diagram for appears in [Forney et al.[6]] (with two symbols 

per branch). Another important feature of this 8-PSK modulation code is that it is phase 
invariant under multiples of 45" rotation (by simple observation of its trellis diagram or 
application of the necessary and sufficient condition for phase invariance given in [37]). 

The modulation code construction method presented above is actually a multi-level 
code construction approach which was first proposed by Imai and Hirakawa[l] and 

Ginzburg [3], and later extended by others[11,13,14,25-28,30-32,34,35 and 371. Using the 
above method, we have constructed a list of short block codes for QPSK, 8-PSK and 16 

PSK modulations given in Table 1. These codes have good minimum squared Euclidean 
distances and provide 3 to 7.2 dB coding gains over the uncoded QPSK modulation. For 
all the 8-PSK and 16PSK codes, the coding gains are achieved without or with little 
bandwidth expansion. All the codes in the table have trellis structure. A modulation code 

C constructed by using the above proposed method has a trellis structure if its component 
codes have trellis structure. A trellis diagram for C can be obtained by taking direct 

product of trellis diagrams of its component codes(371. The code constructions in the table 
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which use Reed-Muller codes as binary component codes are found to be analogues of 
lattice constructions in Forney[l8]. 

2.2 Encoding and Decoding 

Encoding of a 2'-PSK modulation code C of length n constructed based on the above 
method can be done as follows. A message u of 

I 

k = kbi 

i= 1 

bits (called a segment) is divided into 1 subsegments, the i-th subsegment consists of kbi 
bits. For 1 5 i 5 1, the i-th subsegment is encoded into a code vector vi in the binary 

component code Cbi of C. Then the sum 

is the codeword in C for the message segment u. This codeword v is called a frame. The 
components, sl, s2,. . . , s, , of v are then mapped into points in a 2-dimensional 2'-PSK 

signal set and transmitted. Hence, each message segment of k bits is encoded into a 

sequence of n 2'-PSK signals. 
A soft-decision decoding algorithm for the above M-ary PSK codes can be devised 

as follows. For any element s in the group A = {0,1,. . . ,2' - l), let X(s) and Y ( s )  be 
defined as 

X ( s )  = C O S ( ~ ~ - ' T S ) ,  Y ( s )  = sin(P-'lrs). (7) 

For any two elements, s and s', in A, we find that 

4 8 , s ' )  = (X(8) - X(8'))2 + (Y(8) - Y ( i f .  (8) 

For 1 5 j 5 n, let (zj,yj) be the normalized output of a coherent demodulator [37) 
for the j-th symbol of a received frame. The received frame is then represented by 

the following 2n-tuple: c = (zl, yl, z2,y2,. . . ,z, ,y,). For the received frame c and a 

codeword v = (a1, s2,. . . ,sn) in C, let Ic,vl' be defined as follows: 

j= 1 
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Assume that the channel is an AWGN channel. When symbol 8 E (0, 1, . . . ,2' - 1) is 
transmitted, the normolized output (z,y) of a coherent demodulator for Z'-ary PSK is 
distributed with the following joint probability density function, 

where o2 = 1/2p, and p is the SNR per symbol [37]. Suppose every codeword of C is 
transmitted with the same probability. Then we have the following decoding rule: For 
a received frame e, choose a codeword v in C with minimum Ie,v1'. The segment u 
corresponding to v is then the decoded segment. This decoding rule achieves maximum 
likelihood decoding for C over an AWGN channel. If C has a simple trellis structure with 
moderate number of states, the decoding of C can be implemented easily with a Viterbi 
decoding algorithm. 

To analyze the error performance of a 2'-PSK code C, we need to know its complete 
weight distribution. Let v = (sl , s z , .  . . ,sn) be an n-tuple over the additive group A. 
The weight composition of v, denoted comp(v), is a 2'-tuple, 

where ti is the number of components s, in v equal to the symbol i in A. Let W(t) be the 
number of codewords v in C with comp(v) = t. Let T be the set, - 

: O<tiLn with 0 5 i c 2 ' ) .  A T = { ( ~ O , ~ I , - , b - 1 )  

Then, {W(t) : t E T} is the detail weight distribution of C. W(t) can be enumerated from 
the joint weight distribution [39] of the binary component codes, c b 1 ,  Cb2,. . . , c b l  of c. 
Once the detail weight distribution of C is known, its error performance can be analyzed 
and computed for an AWGN channel. The detail weight distributions of the codes listed 
in Table 1 have been determined [25,26,37]. 

3. The Encoding and Decoding of the Proposed Concatenated 
Coded Modulation Scheme 

For the proposed concatenated coded modulation scheme, the inner code, denoted C, , is 
a 2'-PSK code of length nl with binary component codes, c b , ,  c b 2 , .  . . , cat, where Cbi is 

an (nl ,Si)  binary linear code for 1 5 i 5 1. The dimension of Cl is 
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The outer code of the scheme, denoted C2, is an ( ~ , b )  RS code with symbols from 
the Galois field GF(2') and minimum (Hamming) distance 4 = Q - b + 1. Each code 
symbol of the outer code is represented by a binary b-tuple (called a 6-bit byte) based 

on a certain basis of GF(2'). We require that kl = mb where m is a positive integer. 

The encoding of the proposed scheme is performed in two stages. First a message 
of k,b bits is divided into k2 b-bit bytes. Each b-bit byte is regarded as a symbol in 
GF(2'). These k, bytes are encoded according to the outer code C2 to form an nl-byte 

codeword in C2. This codeword is then temporarily stored in a buffer as a row in an array. 
After m outer codewords have been formed, the buffer stores an m x n2 array, called a 
segment-array as shown in Figure 3. Each row of a segment-array is called a section. 
Each column of a segment-array consists of m b-bit bytes (or mb bits), and is called a 

segment. There are k, data segments and n2 - kl parity segments. At  the second stage 
of encoding, each segment of a segment-array is encoded according to the 2'-PSK inner 
code Cl to form a sequence of nl 2'-PSK signals as described in the previous section. 
This sequence of nl 2'-PSK signals is called a frame. The n, frames corresponding to 
the segments of a segment-array form a code block. A code block is transmitted column 
by column (or frame by frame). In fact each frame is transmitted as soon as it has been 
formed. Note that the outer code is interleaved to a depth (or degree) of m. 

The decoding for the proposed scheme also consists of two stages, the inner and outer 

decodings. When a frame in a code block is received, it is decoded into a segment of m 

bytes based on the soft-decision decoding algorithm as described in the previous section. 
The decoded segment is then stored a8 a column of an array in a receiver buffer for the 

second stage of decoding. After % frames of a received code block have been decoded, the 
receiver buffer contains a m x % decoded segment-array. Each column of this decoded 
segment-array may contain symbol (or byte) errors which are distributed among the m 
sections (rows), at most one symbol error in each section. Now the second stage of decoding 
begins. Each section of the decoded segment array is decoded based on the RS outer code 

C,. Suppose the RS outer code is designed to correct t2 or fewer symbol errors with 
0 5 t, 5 [(n, - k,)/2J. If the syndrome of a section corresponds to an error pattern 
of to or fewer symbol errors, error correction is performed. The values and locations of 
symbol errors are determined based on a certain algorithm. If more than tl symbol errors 

are detected, the receiver stops the decoding process and declares an erasure (or raises a 
flag) for the entire segment array. If all the m sections of a segment-array are successfully 
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decoded and the number of segments which contain corrected symbols is t2 or less, then the 
decoded data segments are accepted by the receiver and delivered to the user in proper 

order. Otherwise, the receiver declares an erasure for the entire decoded segment-array. 
When the receiver fails to decode a received block, the block is erased from the receiver 

buffer and a retransmission for that block is requested. However, if retransmission is either 
not possible or not practical and no block is allowed to be discarded, then the erroneous 
block with all the parity symbols removed is accepted by the user with alarm. 

4. Error Performance Analysis 

In this section, we analyze the performance of the proposed concatenated coded modulation 

scheme for an AWGN channel. We assume that all the codewords of the inner modulation 
code are equally likely to be transmitted. 

Let P,“) be the probability that a decoded segment is error-free and be the 
probability that a decoded segment is erroneous. Since the inner code C, is linear over 
(0, 1, . . . ,2’ - 1) under binary component-wise modulo-2 addition, we assume that the 

all-zero codeword 0 is transmitted without loss of generality. For a received frame e, the 
decoded segment is error-free if and only if 

for every nonzero codeword v in C1 (the probability that le,v12 = le,b12 is assumed to be 
zero). It follows from (9) that the inequality of (11) can be put into the following form: 

j= 1 j= 1 

where z = (zl , yl , z2, y2 , . . . , z,, , y, , ) and v = (5 ,  , s2,. . . , s, , ). For any codeword v in 

Cl, let Q(v) denote the set of (zl , yl , z2, y2,. . . , z,, , yn1 ) which satisfies the inequality of 
(12). Define the following set, 

Then it follows from (10) that 
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where the integration is taken over the set Qc. 
Let S be a subset of Cl - {O} such that 

vEC1- {U}  VES 

Then S is called a representative set for Cl - {a}. To evaluate (14), it is desired to find a 

small set S to represent Cl - {a} [25,26]. 
For a nonzero codeword v in C, , let Pi1) (v) denote the probability that a received 

frame c satisfies the following condition: 

The inequality of (16) can be put into the following form: 

where Ivl = d m .  Since the random variable, 

is distributed with a Gaussian distribution of zero mean and variance 4a' IvI', we have 

where 
erfc(z) = - $ lw exp{ - t2}dt 

and p is the SNR per symbol [38]. 
Let Qc and Q(v) denote the complementary sets of Qc and Q(v) respectively. Then 

it follows from (13) and (15) that 
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where S is a representative set for Cl - (a}. Consequently, we obtain the following upper 

bound on e?), 
*E s 

Let A be the set of real numbers such that, for any d E A, there is a nonzero codeword 
v in C1 with squared Euclidean distance d from the all-zero codeword 0. For a d E A and 
a representative set S for Cl - {b}, let Ad[S] be the number of codewords of Cl in S with 
squared Euclidean distance d from the all-zero codeword b. Then it follows from (18) and 
(20) that 

d E A  

Ad[Cl - {a}] can be computed from the complete weight distribution of C1. If we can 
choose a small representative set S for C1 - {a} [25,26], Ad[S] may be much smaller than 
Ad [C, - {b}]  except for "dominaten d's close to the minimum squared Euclidean distance 

D[C1] of c1. 
Next we analyze the error performance of the overall concatenated coded modulation 

scheme. Let P,, P,, and P,, be the probabilities of a correct decoding, an erasure and an 
incorrect decoding for an entire received code block respectively. Then 

Let p:,') denote an upper bound on P:,'), say the right-hand side of (20). Then it follows 
from (22) that 

where gn,,i(z) = zi(l - z)"'-~ for 0 5 z 5 i /n2,  and S ~ , , ~ ( Z )  = (i/n2)i(1 -i/n2)na-i 

otherwise. 

Let p,(u) denote the probability that the error pattern induced by the inner code 
decoding in a decoded segment is u. Let Q, denote the sum of the q largest numbers in 
the following set: 

{ Pe(U), : u E [GF(2')]" - (a}}. 
Then we can show that the probabiIity of an incorrect decoding, Per, is upper bounded as 

follows [see Appendix C for derivation]: 
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where 4 = Q - + 1, and 

Let p, and $er denote the right-hand sides of (23) and (25) respectively. Then p, is 
a lower bound on P,, and per is an upper bound on Per. The probability, 1 - p,, is an 
upper bound on the total probability of a decoding failure and a decoding error. Clearly, 
1 - p, serves as an upper bound on the probability that a received block will be rejected 
(we will call this as the rejection rate). In the case where no block erasure is allowed, 1 - p, 
also serves as an upper bound on the probability of a decoding error. The performance 
of the proposed concatenated coded modulation scheme is then measured by the pair of 
probabilities, and 1 - p,. 

5. Two Specific Concatenated Coded Modulation Schemes 

In this section, Two specific concatenated coded modulation schemes are considered, their 
error performance and coding gains over the uncoded QPSK modulation system are com- 
puted. In both schemes, the NASA standard (255,223) RS code over GF(2') is used as 
the outer code and 8-PSK codes are used as the inner codes. - 

5.1 First Scheme 

For the first specific concatenated coded modulation scheme, the inner code C1 is the 8- 
PSK code of length 8 described in Section 2 (the 4-th code given in Table 1). This inner 
code has dimension kl = 16, effective rate RICl] = 1 and minimum squared Euclidean 
distance DICl] = 4. Since k, = 16 and b = 8, the outer code is interleaved to a depth of 
m = 2. The overall code rate of the scheme is Re,, = (k2/n2)-R[Cl J = (223/255).1 = 0.875 

which is simply the outer code rate. The inner code provides a 3 dB (asymptotic) coding 
gain over the uncoded QPSK modulation without bandwidth expansion. The bandwidth 

expansion required by the overall scheme is due to the coding of the outer RS code. The 

inner code Cl has a 4-state trellis structure as shown in Figure 2 and hence can be decoded 
with a Viterbi decoder. Furthermore it is phase invariant under multiples of 45" rotation. 
This property ensures rapid carrier-phase resynchronization. 

The complete weight distribution of the inner code can be enumerated from the joint 
weight distribution of its three binary component codes, c b 1 ,  cb, and C b S .  For integers i, 
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j and h such that i is even, 0 5 j 5 i 5 8 and 0 5 h 5 8 - i, 

W((h,O,j,0,8 - i - h,O,i - j , O ) )  

= W((O,h,O,j,0,8 - i - h,O,i - j ) )  

= ( e )  () (8;i). 

For other weight composition t = ( to,  t l ,  tl , tS ,  t4  , t 5  , t a  , t 8 ) ,  W(t) = 0. 
By choosing a representative set for C, - {O}, we find the following upper bound on 

the probability of an incorrect decoding for the inner code, 

Let denote the upper bound on P'cl) given by the right hand side expression of (28). 
Then p'cl) is used as a measure of the error performance of the inner code C,. The error 
performance of the inner code and that of the uncoded QPSK versus SNR per symbol is 

shown in Figure 4. Simulation result on is also included. Note that the difference 
between q?) and the simulation result on is very small for SNR > 8 dB/symbol 
(or 5 dB/information bit). We also see that the simple 8-PSK inner code - provides a 

2.31 dB/symbol (real) coding gain over the uncoded QPSK modulation at decoded 
segment-error rate, and a 2.42 dB/symbol coding gain at decoded segment-error 
rate. 

The RS outer code is a very powerful code which is capable of correcting up to 16 

symbol (or byte) errors. From (23) and (28), we can compute the probability 1 - p, which 
is an upper bound on the probability of a decoding failure. From (25) and (28), we can 
compute the probability #er which is an upper bound on the probability Per of an incorrect 
decoding of a received block. 

We can also use the simulation result on P'cl), denoted P',..!, to compute the error 

performance of the overall scheme. Let 1 - Pc,, denote the value computed from the 
expression of (22) with P!') 8 C  replaced by the simulation result qr!. Then 1 - Pc,, gives 

the total probability of a decoding failure and a decoding error for the overall scheme 

based on the simulation results of the inner code. Let fier,, denote the upper bound on 

Per computed from the right-hand side expression of (25) with 8:) and Q j + d l  - ,,, replaced 
by the simulation results, P:c:! and Qj+d,- ,,, ,, , respectively. Simulation result Qj+d, - ,, 

on Qj+d,-w is obtained with a certain confidence level by using the following facts: (1) 
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the probability that the error pattern (an inner codeword) induced by the inner code 
decoding in a decoded frame is v depends only on ( f o , f l  + f 7 , t Z  + f e , f S  + f b , f l )  where 
( f o , f l , f Z , f g , f 4 , t 6 , f b , t 7 )  is the weight composition of v; and (2) a decoded segment is 
uniquely determined from a decoded frame. In the following, we will use 1 - Pc, 1 - Pc,, 
and per,, to measure the error performance of the overall scheme. 

Using the outer code to correct up to 16 symbol errors (tZ = 16), the error performance 
of the overall scheme is shown in Figures 5 to 8, where Figures 5 and 6 give the block-error 

performance and Figures 7 and 8 give the bit-error performance. Figure 5 gives the upper 
bound 1 - pc and simulation result 1 - Pc,, on the total probability of a decoding failure 
and a decoding error versus SNR/symbol, and Figure 6 gives the upper bound Fer,, on 
the probability Per of a decoding error for the overall scheme versus SNR/symbol. From 
Figures 5 to 6, we see that the first specific concatenated modulation scheme proposed in 
this section provides extremely high reliability. For example, with SNR = 9 dB/symbol 
(or 6.57 dB/information bit), the probability of a decoding error is upper bounded by 

6.28 x (using simulation 
results of the inner code). We see that the rejection rate is extremely small and it does 

not affect the system throughput. With SNR = 10 dB/symbol (or 7.57 dB/information 
bit), the probability of a decoding error is less than 6.80 x lo-"! Practically, the scheme 
achieves error-free communication. Figure 5 also shows the coding gain of the scheme 

over the uncoded QPSK in terms of decoded block-error rate. For example, at decoded 
block-error rates, and 10-lo, the scheme achieves coding gains, 8 dB/symbol and 
9 dB/symbol, over the uncoded QPSK (a block of 2 x 223 bytes) respectively. These are 
large coding gains. 

_- 

and the rejection rate is upper bounded by 4.95 x 

For data file transfer, the block-error-rates should be used as the measure of error 
performance of the scheme. However, for the purpose of providing a basis for comparing 
with other coding schemes, we follow the conventional practice to compute the decoded 
bit-error-rate (BER) of the scheme. The bit-error performance of the scheme is shown 
in Figures 7 and 8. Two types of decoded BERs are computed. The first type, denoted 
Pb1, is computed based on the probability Per of an incorrect decoding of a code block 
using the approximation, Pbl = (4 /2no) - Per. This type of BER is a measure of bit-error 
performance of the scheme when retransmission is allowed. The type-1 decoded BER of 
the scheme versus SNR/symbol is shown in Figure 7. We see that the scheme achieves large 

coding gain over the uncoded QPSK for 2 At Pb1 = the coding gain is 
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9.8 dB/symbol (or 9.2 dB/information bit). The required SNR to achieve p a l  = 
7.1 dB/symbol (or 4.6 dB/information bit). 

is 

The second type of decoded BER, denoted &, is computed based on the total prob- 
ability 1 - P, of a decoding failure and a decoding error of a code block using the apprax- 
imation, pbl = (&/2na) (1 - P,). This type of BER is used as the measure of bit-error 
performance of the scheme when retransmission is not allowed. Figure 8 gives the type- 
2 decoded BER of the scheme versus SNR/symbol. We see that, at & = and 
Pbl = the coding gains of the scheme over the uncoded QPSK are 5.52 dB/symbol 
(or 4.94 dB/information bit) and 7.60 dB/symbol (or 7.02 dB/information bit) respectively. 
The required SNR to achieve pbl = lo-* is 8.04 dB/symbol (or 5.61 dB/information bit), 

and the required SNR to achieve Pb2 = lo-'' is 8.50 dB/symbol (or 6.07 dB/information 
bit). 

From Figure 2, we see that the 4-state trellis diagram for the 8-PSK inner code 

consists of two identical parallel 2-state trellis sub-diagrams without cross connections 
between them. This structure suggests that the decoding of the inner code can be done 
with two 2-state Viterbi decoders to process the two trellis sub-diagrams in parallel. This 
implementation not only simplify the decoding complexity but also speeds up the decoding 

I 

- process. Since the inner code is very short, a very high speed decoder can be implemented 
without much cost. 

5.2 Second Scheme 

For the second specific concatenated coded modulation scheme, the inner code C1 is an 8- 
PSK code of length 16, the 5-th code given in Table 1. This inner code C, has dimension 

IC1 = 36, effective rate R[C,] = 9/8 (greater than 1) and minimum squared Euclidean 
distance D[C,]  = 4. It provides a 3.52 dB (asymptotic) coding gain over the uncoded 
QPSK modulation with less bandwidth (a bandwidth reduction). However, it has a 16- 

state trellis diagram which makes the decoder more complicated to implement than the 
4-state 8-PSK inner code used in the first specific scheme. Since IC, = 36 is not a multiple 
of 8, the outer code is interleaved to a depth of m = 9. After the outer code encoding, 

each column of the segment-array consists of 72 bits (or 9 bytes). Each column is divided 

into 2 segments, 36 bits (or 4.5 bytes) each. Then each segment is encoded into a 16- 
symbol codeword in the inner code C1. The overall code rate of this second specific 

scheme is Re,, = (223/255) . (9/8) = 0.9838, and the overall scheme practically requires 
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no bandwidth expansion. 

The complete weight distribution of the above inner code can also be enumerated from 
the joint weight distribution of its binary component codes. By choosing a representative 
set for C1 - {0}, we obtain the following upper bound on the probability of an incorrect 
decoding for the inner code: 

(+(gi4fi)p) qy) 5 248 erfc(fi) + 1920 erfc (4- ) + 30720 erfc 

+ 15360 erfc( '2(8 - 2 3fi)p ) + 16384 erfc(24- ) 

+ 245760 erfc ( 2(8 - 2 3 4 ) P  ) + 262144 erfc ( 7). 2(16 - 2 7 4 ) p  (29) 

Again let denote the upper bound on pic given by the right hand side expression of 
(29). The error performance of this 16-state 8-PSK inner code versus SNR per symbol 
is shown in Figure 9, where the simulation result P,!cf! on and the error perfor- 
mance of the uncoded QPSK (4.5-byte segment) are included. We see that, at 
decoded segment-error rate, the l6-state 8-PSK inner code achieves a 2.26 dB/symbol 
(2.77 dB/information bit) real coding gain over the uncoded QPSK with less bandwidth. 

Again the (255, 223) RS outer code in the second specific concatenated coded mod- 
ulation scheme is used to correct up to 16 symbol errors. The error performance of the 
overall scheme is shown in Figures 10-13. From Figures 10 and 11, we see that, with SNR 
= 10 dB/symbol (or 7.06 dB/information bit), the probability of a decoding error of the 
overall scheme is upper bounded by 6.91 x lo-" and the rejection rate is upper bounded by 
2.08 x (using simulation results of the inner code). Figure 10 shows the coding gain 
of the second scheme over the uncoded QPSK in terms of decoded block-error rate. For 
example, at decoded block-error rates, lo-' and 10- lo  , the second specific concatenated 

coded modulation scheme achieves coding gains, 7 dB/symbol and 8 dB/symbol, over the 

uncoded QPSK (a block of 9 x 223 bytes) respectively with very little overall bandwidth 
expansion. Figures 12 and 13 give the bit-error performance of the second specific scheme. 
At  type-1 decoded BER, p b 1  = the coding gain over the uncoded QPSK is 15 
dB/symbol. At type-2 decoded BERs, p b 2  = and Pbl = l O - ' O ,  the coding gains of 

the second specific concatenated coded modulation scheme over the uncoded QPSK are 
4.05 dB/symbol (or 3.98 dB/information bit) and 6.26 dB/symbol (or 6.19 dB/' information 

bit) respectively. 
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From Figures 10-13, we see that the second specific concatenated coded modulation 

scheme considered above also achieves extremely high reliability and large coding gain over 
the uncoded QPSK modulation system. The 16state  trellis diagram of the inner code 

consists of two identical parallel 8 s t a t e  trellis sub-diagrams with no cross connections 
between them, and hence the decoding of the inner code can be done with two 8-state 

Viterbi decoders to process the two trellis sub-diagrams in parallel. Furthermore, the 
inner code is also proved to be invariant under multiples of 45" phase shift[37]. 

Comparing the two specific concatenated coded modulation schemes, we find that the 
second scheme achieves about 1 dB/symbol less coding gain (in terms of decoded block- 
error rate) than the first scheme. However, the second scheme requires less bandwidth 
expansion than the first scheme. Both schemes are suitable for high-speed satellite com- 
munications for large date file transfer where high reliability is required. Furthermore, 
both schemes are very robust in correcting burst-errors. The first scheme is capable of 

correcting any single burst of errors of length up to 241 bits, while the second scheme is 
capable of correcting any single burst of errors of length up to 1081 bits! 

6. Conclusion Remarks 

In this paper, a concatenated coded modulation scheme for error control in data com- 
munications has been presented. This scheme is achieved by concatenating a RS (or 
maximum-distance-separable) outer code and a bandwidth efficient block inner code for 

the M-ary PSK modulation. Error performance of this scheme has been analyzed. A 
simple method for constructing bandwidth efficient block codes for the M-ary PSK mod- 
ulation has been devised. By two specific examples, we have shown that extremely high 
reliability can be achieved by concatenating a good short 8-PSK moduIation inner code 
and a relatively powerful RS outer code, such as the NASA standard (255,223) RS code 
over GF(Z8). Since the inner code is short, a high speed decoder with a soft-decision 
decoding algorithm can be implemented without much cost (or complexity). If a proper 
high effective rate inner code is used, the bandwidth expansion required by the overall 

scheme due to coding will be greatly reduced. The proposed scheme is actually devised to 

achieve coded modulation with reduced complexity. It offers a way of obtaining the best 

of three worlds, reliability, complexity and bandwidth efficiency. The proposed scheme is 
particularly suitable for high-speed satellite communications for large file transfer where 

high reliability is required. 
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The inner code decoder can be implemented to perform both decoding and erasure 

operations[40]. In this case, a decoded segment may contains symbol errors and an erased 
segment creates m symbol erasures, one in each section. The RS outer code is then designed 
to correct both symbol errors and erasures. 

Of course, other types of modulation codes can be used as inner codes in the proposed 
concatenated coded modulation scheme. 
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Appendix A 
Proof of t-e Lower Bound on D[C] Gagen uy (") 

Let v and v' be two different codewords in C. Then v and VI can be expressed as follows: 

Then, since the minimum Hamming distance of ch is &, there exists 6, suffices 1 5 jl < 
j2 < < jbh 5 n such that 

For a nonempty subset B of the group A, let d[B] denote the minimum distance between 
elements in B. 

Since sij = sij for 1 5 i 5 h and 1 5 j 5 n, we have that, for 1 5 p 5 6h, 

i= 1 i= 1 i= 1 

Since d ( s ,  s)) = d ( s  - s) ,0) and dh = d[& + Bh+ + . - - + B,] ,  it follows from (A-7) that, 
for 1 5 p 5 &, 

i=  1 i= 1 

n I 1 
Since d(")(v,v') = d( sij, sij), we have that 

j= 1 i - 1  i = l  
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Appendix B 
Trellis Diagram for the 8-PSK Code Described in Section 3 

The 8-PSK code C described in Section 2 consists of three binary component codes c b l ,  

c b p  and Cb3 where (1) c b 1  is the binary (8,l) code which consists of the all-zero and all- 
one vectors; (2) c b p  is the binary (8,7) code with all the even weight vectors; and (3) c b s  

is the (8,8) code which consists of all binary 8-tuples. Let u be a 16-bit message segment 
to be encoded. Divide u into three sub-segments ul, up and us where u1 consists of only 
one bit, u2 consists of seven bits and us consists of eight bits. Then u l ,  up and us are 

encoded based on cbl, c b p  and C b S  respectively. Let 

be their corresponding binary codewords. Note that a is either the all-zero vector or the 
all-one vector. The codeword b has even weight. 

For 1 5 1 5 8, the input to the signal selector of the overall encoder-modulator at 

the I-th time unit is the triplet (a l ,  b l ,c l ) .  If a, = 0, then ( b l , c l )  selects a point from the 

QPSK signal set shown in Figure lb. If a, = 1, the (b , ,  c , )  selects a point from the QPSK 
signal set shown in Figure IC. Hence the system switches between two QPSK signal sets. 
To construct the trellis diagram for C, we need to define the states of the overall encoder- 

modulator. Let (b ,  ,bp, .  . . , b l )  denote the 1-bit prefix of codeword b. Let W ( b l ,  b p ,  . . . , b , )  
denote the Hamming weight of ( b , ,  4 , .  . . , b t ) .  At the I-th time unit, the state of the 
encoder-modulator depends on the bit u, and the number W(bl ,4,. . . , 4 ) .  Define the 
following states: 

(1) A, represents the state that a, = 0 and W(bl , b p , .  . . , bl) is even; 
(2) A, represents the state that u1 = 0 and W(b, , b p ,  . . . , b,) is odd; 

(3 )  Be represents the state that al = 1 and W ( b l ,  b p , .  . . , bl) is even; and 
(4) Bo represents the state that u, = 1 and W ( b l ,  bp , .  . . , b,) is odd. 

Assume that the encoder-modulator starts from the state A, at the time 1 = 0. Then 

the trellis diagram for C can be constructed easily as shown in Figure 2. There are two 
parallel branches (or transitions) between the transition of two states; they correspond to 

cI = 0 and cI = 1 respectively. 
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The encoding of message u is equivalent to tracing a path in the trellis diagram. The 
codeword corresponding to u is a sequence of QPSK signal points either from the set shown 
in Figure lb or from the set shown in Figure IC. 
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Appendix C 
Derivation of the Upper Bound on Per Given by (25) 

Let us number the segments in a decoded segment-array (Fig.3) from 1 to %. Let ef be 
the f-th decoded segment, and 6 = (el ,e2,. . . , enr ) .  Suppose that the segment-array is 
decoded incorrectly by the outer code decoder. Then the segment-array is decoded into an 
interleaved outer codeword and Q, +0, where Q, is the actual transmitted interleaved outer 

codeword and Q is the nonzero interleaved codeword induced by the outer code decoding. 
Let vf be the f-th segment of 9. Define the following sets associated to .7r and 6. 

W(C) e {f : v, # b } ,  (C - 1) 

When a segment-array is decoded based on the outer code C2, only t2 or fewer error 
segments are corrected. Hence, the following inequality holds: 

Let Co denote the interleaved outer code. For Q E Co, H C {1,2,. . . , nl} and J G 
{1,2,.. . ,n2} such that H is disjoint from W ( C ) , J  C W(C) and IHI + IW(e)l - 1.71 5 t2 ,  

let P, (Q, H, J )  be the probability of the occurrence of an error segment-array 6 induced 

by the inner code decoding for which H(6,Q)  = H and J(6 ,Q)  = J. Then 

f E J  / E W ( Q ) -  J 

where w = IW(Q)l,h = ]HI and p,(u) denotes the probability that the error pattern 
induced by the inner code decoding in a decoded segment is u. 

LetWbeasubsetof{l,2, ..., n2}-HsuchthatW 2 J, 4 5 IWlandIWl+h-j<t,. 

Let Co(W) be defined as the following subset of codewords in Co: 

Co(W) g{ (vl,v2 ,..., vnr)ECo : v, # b  ifandonlyif f E W  }. ((7-6) 

For .3. E Co(W),  W ( Q )  = W. Let w denote IWl. Next we estimate 
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Since t2 5 (4 - 1)/2, we have that 

d.2 2 2t2 + 1. (C - 7) 

Since 4 5 w and h + w - j I t2 ,  it follows from (C - 7) that 

j 2 W - & > O .  (C - 8) 

111 = w - 4.  (C - 9) 

Let J' be a subset of J such that 

For any af E [GF(2")3" - (0) with f E J ' ,  consider two different codewords 3 = 

(v1,v2 ,... ,v,,) and ?' = (v,,v, ,... ,vha) in Co(W) such that vf =vi = af for f E J ' .  
Since the number of nonzero segments of ? - 3' is at least 4 ,  we have that 

' I  

v#v;, for f e w - J ' .  (C - 10) 

It follows from a well known inequality and (C - 10) that 

c 
c 

where Q, denotes the sum of the q greatest pe(u)'s in the set 

{ Pe(U)' : u E [GF(2*)]" - (0)). 

Note that 

5:' = c Pe (u) 
u E  [ C F ( O b ) ]  - (0) 

Then it follows from (C - 11) that 

(C - 11) 

(C - 12) 

(C - 13) 

23 



e 

Hence we have that 
(C - 14) 

Since Per is the sum of 

that 

Pe(+, H ,  J )  taken over all possible W, H and J ,  we have 
4 € C O ( W )  
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Table 1 Some short QPSK, 8-PSK and 16-PSK codes (the reference system J the uncoded 

G 16 8 B/16 5.12 29x2 =!2 4 6  YeS 
16 16 112 60 29x29 Rh&l m2 YeS 

Q 32 16 21/32 7.2 2 ' X P  R & s  w3 YeS 

ltLPSK Go 32 4 514 3.9 2 x P x 2  m,2 & vi2 Yes 
( 1 4 )  

Notations: - 

(1) Vn = (0,1}"; 
(2) Pn denotes the (n,n - 1) linear binary code which consists of all the even-weight 

binary n-tuple; 

(3) Pi denotes the dual code of P,, which consists of the all-zero and all-one vectors; 
(4) RMi,j denotes the j-th order binary Reed-Muller code of length 2'; 

(5) 5 - RM., j  denotes a shortened version of RMi,j; 
(6) ez-Golay denotes the (24,12) extended Golay code. 
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Figure 4 Error performance of the 4-state 8-PSK block code (the 4-th code in Table 1) 
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Figure 6 
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The total probability of a decoding failure and a decoding error for the concatenated 

coded modulation scheme with the (255,223) RS outer code and the 4-state 8-PSK 
block inner code (the 4-th code in Table 1) 
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Figure 0 The probability of a decoding error for the concatenated coded modulation scheme 
with the (255,223) RS outer code and the 4-state 8-PSK block inner code (the 4-th 
code in Table 1) 
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Figure 7 Type1 bit-error performance of the concatenated coded modulation scheme with the 

(255,223) RS outer code and the 413tate 8-PSK block inner code (the 4-th code in 
Table 1) 
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Figure 8 Type-2 bit-error performance of the concatenated coded modulation scheme with 
(255,223) RS outer code and the I-state &PSK block inner code (the 4-th code in 

Table 1) 
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Figure 9 Error performance of the 16-state 8-PSK block inner code (the S t h  code in Table 1) 
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Figure 10 The total probability of a decoding failure and a decoding error for the concatenated 
coded modulation scheme with the (255,223) RS outer code and the 16-state 8-PSK 
block inner code (the 5-th code in Table 1) 

39 



10 I 1 I 

4.5 5.0 5.5 6.0 

Figure 11 The probability of a decoding error for the concatenated coded modulation scheme 
with the (255,223) RS outer code and the 16-state 8-PSK block inner code (the 5-th 

code in Table 1) 
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Figure 12 Type-1 bit-error performance of the concatenated coded modulation scheme with the 
(255,223) RS outer code and the 16-state 8-PSK block inner code (the 5-th code in 
Table 1) 
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Figure 13 Type-2 bit-error performance of the concatenated coded modulation scheme with the 
(255,223) RS outer code and the l k t a t e  8-PSK block inner code (the 5-th code in 

Table 1) 

42 


